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Abstract. The effect of shear flow on the phase-ordering dynamics of a binary mixture with field-dependent
mobility is investigated. The problem is addressed in the context of the time-dependent Ginzburg-Landau
equation with an external velocity term, studied in self-consistent approximation. Assuming a scaling
ansatz for the structure factor, the asymptotic behavior of the observables in the scaling regime can be
analytically calculated. All the observables show log-time periodic oscillations which we interpret as due to
a cyclical mechanism of stretching and break-up of domains. These oscillations are damped as consequence
of the vanishing of the mobility in the bulk phase.

PACS. 47.20.Hw Morphological instability; phase changes – 05.70.Ln Nonequilibrium and irreversible
thermodynamics – 83.50.Ax Steady shear flows

1 Introduction

A well-studied problem in non-equilibrium statistical me-
chanics is the growth of domains in quenching pro-
cesses [1]. Namely, when a system is suddenly quenched
from a disordered initial state into a thermodynamic re-
gion where different phases coexist, macroscopic domains
can be observed, usually characterized by a single time-
dependent length scale, which grows as a power law L(t) ∼
tz. The spatial patterns of the domains at two different
times are related by a global change of this length scale.
A signature of this dynamical scaling is the fact that the
structure factor C(k, t) can be cast in the form

C(k, t) = Ld(t)Co(kL(t)) (1)

where Co is the scaling function.
In the case of a binary mixture, the evolution of the

system is described by a scalar order parameter φ rep-
resenting the difference of concentrations of the two liq-
uids in the mixture. When hydrodynamic effects are not
considered, the quenching process can be described by an
equation of the form ∂tφ =−∇·j, where j =−Γ∇(δH/δφ),
H is a free-energy functional describing the ordered phases
and Γ is a transport coefficient called mobility, usually
taken constant. It has been argued [2] that the dynamics
is more accurately mimicked considering a field-dependent
mobility of the form

Γ (φ) = (1− a(T )φ2) (2)
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where a(T ) → 1 for temperature T → 0, a(T ) → 0 for
T → Tc. In this way it is possible to take into account
the different nature of the two mechanisms which operate
during the phase separation: surface diffusion and bulk dif-
fusion. The first has a growth exponent z = 1/4 [3] and is
due to the diffusion of molecules of the two species along
the interfaces. The second, which is also called Lifshitz-
Slyozov mechanism, is due to the diffusion of molecules of
one species from more curved interfaces, where they evap-
orate, to less curved ones through the bulk of the other
phase. The corresponding growth exponent is z = 1/3 [4].
At high temperatures (but still less than the critical tem-
perature) the bulk diffusion is the only observed because
it is faster than the other. Since bulk diffusion is a ther-
mal activated process [5], one expects that, lowering the
temperature, a regime with z = 1/4 can be observed. The
proposed form (2) for the mobility is able to catch these
features. For shallow quenches (a � 1) the mobility re-
mains constant in the whole system, while for very deep
quenches (a = 1) Γ (φ) vanishes in the bulk phases where
φ2 = 1, suppressing the bulk diffusion. The diffusion along
the interfaces is unaffected because Γ (φ) ' 1 on domain
boundaries.

The effect of an order parameter-dependent mobil-
ity (2) on systems with scalar order parameter has been
studied by simulations [6,7]. It has been found that for
a = 1 the length scale L(t) grows as t1/4 and for 0 < a < 1
there is a crossover between L(t) ∼ t1/4 and L(t) ∼ t1/3.
Recently, a non constant mobility has been also used to
study the phase-ordering dynamics in systems with a vec-
torial order parameter [5,8]. In [5] the expression (2) for
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the mobility has been adopted. The limit N →∞ , where
N is the number of vectorial components, is analytically
solvable and corresponds to the self-consistent approxi-
mation of the scalar case. It is characterized by a growth
exponent 1/6 for the case a = 1. For 0 < a < 1 the usual
value 1/4 of the growth exponent for vectorial systems is
recovered in the asymptotic regime. A more general form
of the mobility has been introduced in [8], being given by

Γ (φ) = (1− φ2)α (3)

where α is a positive real number.
In this paper we are concerned with the phase separa-

tion of a binary mixture subject to a uniform shear flow
when the mobility is given by equation (3). When a shear
flow is applied to a quenched binary mixture, the pat-
tern of the phase-separating domains as well as the time
evolution are strongly modified by the flow [9]. Domains
greatly elongated in the flow direction have been observed
in simulations [10,11] and in experiments [12]. A differ-
ence ∆z = 0.8 ÷ 1 between growth exponents has been
measured in some experiments, with the larger exponent
in the flow direction [13,14]. The deformation of domains
affects the rheological properties of the system, giving rise
to an increase of the stress tensor, which is proportional to
1
V

∫
dr(∂αφ)(∂βφ), where V is the system volume and α

and β denote the spatial directions [15]. Since (∇φ)(∇φ)
behaves like a δ-function near the interface, during the
phase separation larger stress contributions arise from in-
terface deformations. This produces an increase ∆η of the
viscosity, which is proportional to the diagonal term of the
stress tensor [15,16]. This behavior has its explanation in
the fact that mechanical energy is expended to deform
the domains against the interfacial tension. When the do-
mains are stretched to such an extent that they start to
burst, the stored mechanical energy is dissipated and the
excess viscosity decreases. The phase separation in steady
shear for binary mixtures with constant mobility has been
recently studied in [17]. There, using a self-consistent ap-
proximation, an equation for the time evolution of the
structure factor has been derived and solved numerically.
The existence of an anisotropic dynamical scaling theory
with different growth exponents in flow and in other direc-
tions has been shown: the growth exponent in the shear
direction is not affected by the shear and the difference
between them is 1. It is found that the excess viscosity
∆η, after reaching a maximum, relaxes to zero, exhibiting
log-time periodic oscillations. Also other physical observ-
ables are modulated by such oscillations, which can be
related to a cyclical mechanism of storing and dissipation
of elastic energy. Here we want to see the effects of a non
constant mobility on this scenario.

The outline of the paper is as follows. In Section 2 we
present the model and derive the equation of time evolu-
tion for the structure factor in a self-consistent approxi-
mation. In Section 3 we report the asymptotic behavior of
the model. We found two different growth exponents for
the flow and the shear directions, given in the leading scal-
ing regime by zx = (5+2α)/2(2+α) and zy = 1/2(2+α),
respectively. The asymptotic behavior of the rheological

quantities is also calculated. Finally, in Section 4 we inte-
grate numerically the time evolution equation of the struc-
ture factor and calculate the whole evolution of the physi-
cal observables as moments of the structure factor. In the
asymptotic regime they are modulated by damped log-
time oscillations. Our conclusions complete the article.

2 The model

We consider a binary mixture whose evolution is described
by the diffusion-convection equation

∂φ(r, t)
∂t

+∇ · (φ(r, t)v) = ∇ ·
[
Γ (φ)∇

(
δH[φ(r, t)]

δφ

)]
(4)

where the field φ(r, t) describes the concentration differ-
ence between the two components of the mixture, Γ (φ) is
the mobility, which depends on the order parameter as in
equation (3). The order parameter φ is convected by an
external velocity field [9]. We choose a planar shear flow
with

v = γyex, (5)

where γ is the shear rate, assumed constant, and ex is
a unit vector in the flow direction. The free energy func-
tional is chosen to be of the standard φ4 form:

H[φ] =
∫

dr
[
−1

2
φ2(r, t) +

1
4
φ4(r, t) +

1
2
|∇φ(r, t)|2

]
(6)

where we assume that all parameters have been rescaled
into dimensionless units [18] and the system is below the
critical temperature. The two minima of the polynomial
part of H[φ] describe the pure states of the mixture.

In this article we deal with the non-linear term of equa-
tion (4) in a self-consistent approximation; hence the term
φ3 appearing in the functional derivative δH/δφ is lin-
earized as < φ2 > φ, where < ... > stands for the aver-
age over the system. In the same way the term φ2 in the
mobility is substituted by < φ2 >. In the Fourier space
equation (4) becomes:

∂φ̂(k, t)
∂t

= γkx
∂

∂ky
φ̂(k, t)

− (1− S(t))αk2
[
S(t)− 1 + k2

]
φ̂(k, t) (7)

where S(t) =< φ2(r, t) > and φ̂(k, t) is the Fourier trans-
form of φ(r, t).

The statistical quantity of experimental interest is the
time-dependent structure factor C(k, t) which is defined
as < φ̂(k, t)φ̂(−k, t) >. It obeys to the evolution equation:

∂C(k, t)
∂t

= γkx
∂

∂ky
C(k, t)

− 2(1− S(t))αk2
[
S(t)− 1 + k2

]
C(k, t) (8)
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which is closed by the self-consistency condition

S(t) =
∫
|k|<q

dk
(2π)d

C(k, t) (9)

where q is a phenomenological cutoff. Rheological quanti-
ties of interest can be calculated as momentum integrals of
the structure factor. Since we restrict the solution of the
model to the two-dimensional case, we consider the ex-
cess viscosity ∆η and the first normal stress ∆N1 defined
by [19]

∆η = −γ−1

∫
|k|<q

dk
(2π)d

kx ky C(k, t) (10)

∆N1 =
∫
|k|<q

dk
(2π)d

[
k2
y − k2

x

]
C(k, t). (11)

3 The scaling behavior

Assuming simple scaling for the structure factor, we write,
for arbitrary space dimensionality d,

C(k, t) =
d∏
i=1

Ri(t)F (X, τ(γt)) (12)

where the subscript i labels the space directions with i = 1
along the flow, Ri is the average size of domains in the i-th
direction, X is a vector of components Xi = kiRi(t) and
F is a scaling function. Some comments are in order here
about the scaling hypothesis. Our self-consistent approx-
imation is equivalent to that made in the large-N limit
for vectorial systems [20]. In that case, at γ = 0, simple
scaling is not verified for α = 0 [21] and α 6= 0 [8] so
that C(k, t) has not the form (1) but can be written as
Ldξ(k/km), where km is the position of the maximum in the
structure factor and ξ is a function which depends continu-
ously on k (multiscaling). After this article was completed
we became aware of a recent work [22], in which the ex-
act solution for the case γ 6= 0 with constant mobility is
found in the large-N limit. In [22] it is shown that the
structure factor exhibits multiscaling. At the moment a
similar analysis is not available for the case with field-
dependent mobility. However, since simple scaling is the
leading approximation in the regions of the maxima of the
structure factor, we can use it to obtain the correct value
of the growth exponents (apart from logarithmic correc-
tions) because the momentum integrals which define the
observables are dominated by the maxima of C(k, t). We
also allow in (12) an explicit time dependence of the struc-
ture factor through τ(γt); notice that since C(k, t) scales
as the domains volume below the critical temperature, τ
must not introduce any further algebraic time dependence
in C(k, t). From the numerical results of the next section,
we will see that F is a damped periodic function of τ .

Inserting the form (12) of C(k, t) into equation (8)
we obtain:

γX1F2 = R1R
−1
2

{
τ̇
∂F

∂τ
+

d∑
i=1

[
R−1
i Ṙi(F +XiFi)

+2
[
1− S(t)

]α
R−2
i X2

i

( d∑
k=1

R−2
k X2

k −1+S(t)
)
F

]}
(13)

where Fi = ∂F/∂Xi and a dot means a time derivative.
Under the assumptions that R1 � Ri (i = 2, d) and
Ri ' R̃ (i = 2, d) we can write

γX1F2 = R̃−1R1

{
τ̇
∂F

∂τ
+R−1

1 Ṙ1(F +X1F1)

+
d∑
i=2

[
R̃−1 ˙̃

R(F +XiFi) + 2
[
1− S(t)

]α
× R̃−4X2

i

( d∑
k=2

X2
k − (1− S(t))R̃2

)
F

]}
. (14)

Since the l.h.s. of equation (14) has no explicit algebraic
time dependence, one has the asymptotic solutions

R1(t) ∼ γ t(5+2α)/2(2+α)

R̃(t) ∼ t1/2(2+α)(
1− S(t)

)
∼ t−1/(2+α)

τ(γt) ∼ log γt. (15)

The growth exponents in the flow and in the shear direc-
tions are zx = (5 + 2α)/2(2 + α) and zy = 1/2(2 + α).

We observe that zx − zy =
4 + 2α

2(2 + α)
= 1. The value zy

is the same found in [8], in the leading approximation,
in a model having a field-dependent mobility with vecto-
rial conserved order parameter without shear. Increasing
the values of α, one obtains values smaller with respect
to the case with constant mobility, when zx = 5/4 and
zy = 1/4. The shear affects only the growth exponent zx
which remains greater than 1 for every real and positive
value of α.

The previous arguments can be used to establish the
scaling properties of the rheological coefficients. Inserting
the form (12) into equation (10) we obtain

∆η(t) ∼ (γt)−(3+α)/(2+α)γ−(1+α)/(2+α)

×
∫
X1X2F [X, τ(t)] dX. (16)

Therefore, in the scaling regime, for each value of γt,
the functions ∆η corresponding to different values of
γ collapse each on the others if rescaled as ∆η →
γ(1+α)/(2+α)∆η. A similar analysis can be done for
the normal stress. It is straightforward to show that
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γt = 1 γt = 4 γt = 9

kx kx kx

ky ky ky

Fig. 1. The structure factor at consecutive times for γ = 0.01 and α = 1. The kx coordinate assumes positive values on the
right of the picture, while the ky is positive towards the upper part of the plane. The maximum value of |ky| is 0.8. In the other
direction, kx varies in the range [−0.8, 0.8], [−0.4, 0.4] and [−0.2, 0.2], respectively. The positions of the peaks on the left foil of
the structure factor is (−0.22, 0.37) for the highest and (−0.08,−0.24) for the other at γt = 4. At γt = 9 the highest peak is
located at (−0.05,−0.23) and the other, at (−0.10, 0.36).

in the asymptotic regime

∆N1 ∼ t−1/(2+α)

∫
X2

2F [X, τ(t)] dX. (17)

Setting α = 0, we recover the previous results for the case
with constant mobility [17].

4 Results and discussion

In this section we consider the numerical solution of equa-
tion (7). We will present the results for the calculation of
the average size of domains and of the rheological indica-
tors ∆η and ∆N1, stressing the effects of a non-costant
mobility. We solved the equation of time evolution of
the structure factor numerically in two dimensions, im-
plementing a first-order Euler scheme with an adaptive
mesh. The starting configuration for the structure factor is
a constant value, which corresponds to a disordered state
at very high temperature. Equation (7) has been solved for
different values of γ. In the following, results will be shown
for the case γ = 0.01. Similar results have been obtained
in the other cases. The two values α = 1 and α = 2 for
the parameter α appearing in (3) have been considered.
At the beginning the function C(k, t) develops a circular
volcano shaped structure. This is then deformed, as con-
sequence of shear, into an elliptic structure. The sizes of
the axes of the ellipse decrease in time at a different rate,
this being larger in the kx-direction. During this evolu-
tion two dips start to develop in the volcano edge until
C(k, t) is made of two foils. In Figure 1 at γt = 1, the
shape of C(k, t) representative of this stage of the evolu-
tion is plotted. Later, on each foil, two well-formed peaks
can be seen. At γt ' 4 the peaks characterized by the
larger values of |ky| prevail. Observe that the structure
factor is symmetric with respect to the change k → −k.
The peaks with the smaller |ky | corresponding to a more
isotropic configuration of domains, grow faster than the
others until they prevail as it can be seen in Figure 1 at
γt = 9. These peaks continue to prevail along all the time

evolution. What we observed is that the peaks continue
always to grow and that the difference of their heights as
a function of the shear strain γt is an increasing function
being modulated by damped oscillations.

In order to get information about the growth of do-
mains, we computed the typical domain size as

Rx(t) =
( ∫

dkC(k, t)∫
dkk2

xC(k, t)

)1/2

(18)

and the same for the other direction. The values of Rx and
Ry are plotted in Figure 2 as function of the shear strain
γt for α = 1 and α = 2. We plotted also the values for
the case with constant mobility (α = 0). Some comments
are in order here. The asymptotic behavior is the one ex-
pected through the previous scaling analysis: for α = 1
one has Rx ∼ t7/6 and Ry ∼ t1/6; for α = 2, Rx ∼ t9/8

and Ry ∼ t1/8. The growth exponents in both the direc-
tions are decreasing functions of the mobility exponent α.
This is reasonable since the mobility (3) becomes smaller
and smaller when α increases, if (1 − φ2) < 1. Another
consideration is about the superimposed log-time periodic
oscillations. In the case with constant mobility these oscil-
lations have an apparently constant amplitude. For non-
zero values of α these oscillations are damped. We will see
that this feature is common to all the observables and will
be discussed later.

We turn now to the study of the rheological behav-
ior of the system. The external velocity field causes ad-
ditional stresses on the mixture. Important indicators are
the excess viscosity and the first normal stress. We calcu-
lated numerically ∆η and ∆N1 using their definitions (10)
and (11), respectively. The results are shown in Figure 3
and Figure 4. The excess viscosity reaches its maximum at
the onset of the scaling when the domains are expected to
be maximally stretched in the flow direction and the struc-
ture of C(k, t) is the one shown at γt = 4 in Figure 1. Ac-
cording to our analysis of the scaling behavior, we expect
the excess viscosity to scale with γ as ∆η ∼ γ−(1+α)/(2+α)

for fixed value of γt. In the inset of Figure 3 we report for
the case α = 1 the dependance of ∆ηM on γ. We find an
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Fig. 2. The typical size of domains as function of the strain
γt in the flow and in the shear directions for different values of
α: α = 0 (full line), α = 1 (dashed line), α = 2 (dotted line).

Fig. 3. Plots of the excess viscosity vs. the strain γt for dif-
ferent values of α: α = 0 (full line), α = 1 (dashed line), α = 2
(dotted line). The inset shows the maxima of ∆η as function
of γ for the case α = 1. The slope of the straight line is 0.8.

exponent 0.8 slightly larger than the expected 2/3. The
reason can be related to the fact that the excess viscos-
ity reaches the maximum before the asymptotic regime is
fully realized. Then ∆η decreases as a consequence of the
dissipation of the elastic energy stored by domains which
start to burst when they are stretched furtherly. Therefore
more isotropic patterns form and the typical structure of
the function C(k, t) is the one at γt = 9 in Figure 1. The
excess viscosity decreases with a power law behavior which
is consistent with the predicted exponent−(3+α)/(2+α).
The first normal stress reported in Figure 4 decreases in

Fig. 4. The first normal stress as function of the strain γt for
different values of α: α = 0 (full line), α = 1 (dashed line),
α = 2 (dotted line).

time according to the exponent −1/(2 + α) after reach-
ing a maximum. The amplitudes of all quantites plotted
in Figures 2, 3 and 4 are modulated by damped log-time
oscillations [23]. We believe that the physical explanation
for the damping of oscillations may be found in the vanish-
ing value of the mobility at equilibrium. In the case with
constant mobility the origin of the oscillations is related
to a cyclical mechanism of elongation and bursting of do-
mains, which allows to store and dissipate elastic energy
in the system [17]. In the present case, during the time
evolution, the decreasing values of Γ (φ) suppress diffu-
sion in the bulk phase and inhibit the growth of small
bubbles coming from bursting. Therefore, they cannot be
stretched too much by the flow. In this way it is more dif-
ficult to store elastic energy in the system and the excess
viscosity can increase only by a small amount. This mech-
anism of growth inihibition becomes stronger and stronger
in the course of evolution causing the observed damping
of oscillations.

In conclusion, we have studied the phase separation of
a binary mixture with field-dependent mobility in shear
flow. We proved that dynamical scaling holds for this sys-
tem. There are different growth exponents in the flow and
in the shear directions which depend on the mobility ex-
ponent α. The difference in growth exponents is always
1. All the physical observables have amplitudes decorated
by damped oscillations which are periodic in logarithmic
time. We made a guess about the origin of this behavior.
It would be an important endeavour to study this system
in direct simulation of equation (4) to deeply understand
this phenomenon.

We thank Federico Corberi for valuable discussions about the
subject of this work.
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